Computational utility functions.
  This module defines a number of low-level, numerical, high-performance
  utility functions like rmsd for example.
    | (n,3) numpy.array |  | 
    | tuple | 
        
          | bfit(X,
        Y,
        n_iter=10,
        distribution= 'student',
        em=False,
        full_output=False)Robust superposition of two coordinate arrays.
 | source code |  | 
    | (d,) numpy.array |  | 
    | numpy array | 
        
          | deg(x) Convert an array of torsion angles in radians to torsion degrees 
      ranging from -180 to 180.
 | source code |  | 
    | (m,) numpy.array |  | 
    | numpy array |  | 
    | (m,) numpy.array |  | 
    | iterable |  | 
    | tuple | 
        
          | fit(X,
        Y) Return the translation vector and the rotation matrix minimizing the 
      RMSD between two sets of d-dimensional vectors, i.e.
 | source code |  | 
    | (n,3) numpy.array |  | 
    | tuple | 
        
          | fit_wellordered(X,
        Y,
        n_iter=None,
        n_stdv=2,
        tol_rmsd=0.5,
        tol_stdv=0.05,
        full_output=False) Match two arrays onto each other by iteratively throwing out highly 
      deviating entries.
 | source code |  | 
    | (d,d) numpy.array |  | 
    | bool |  | 
    | tuple |  | 
    | numpy array | 
        
          | rad(x) Convert an array of torsion angles in torsion degrees to radians.
 | source code |  | 
    | (d,) numpy.array |  | 
    | float | 
        
          | rmsd(X,
        Y) Calculate the root mean squared deviation (RMSD) using Kabsch' 
      formula.
 | source code |  | 
    | float | 
        
          | rmsd_cur(X,
        Y) Calculate the RMSD of two conformations as they are (no fitting is 
      done).
 | source code |  | 
    | tuple | 
        
          | scale_and_fit(X,
        Y,
        check_mirror_image=False) Return the translation vector, the rotation matrix and a global 
      scaling factor minimizing the RMSD between two sets of d-dimensional 
      vectors, i.e.
 | source code |  | 
    | (d,d) numpy.array |  | 
    | float | 
        
          | tm_score(x,
        y,
        L=None,
        d0=None) Evaluate the TM-score of two conformations as they are (no fitting is
      done).
 | source code |  | 
    | tuple | 
        
          | tm_superimpose(x,
        y,
        fit_method=<function fit at 0x7fe0c56e4c08>,
        L=None,
        d0=None,
        L_ini_min=4,
        iL_step=1) Compute the TM-score of two protein coordinate vector sets.
 | source code |  | 
    | float |  | 
    | numpy.array |  | 
    | tuple | 
        
          | wfit(X,
        Y,
        w) Return the translation vector and the rotation matrix minimizing the 
      weighted RMSD between two sets of d-dimensional vectors, i.e.
 | source code |  | 
    | float | 
        
          | wrmsd(X,
        Y,
        w) Calculate the weighted root mean squared deviation (wRMSD) using 
      Kabsch' formula.
 | source code |  | 
    | tuple | 
        
          | xfit(X,
        Y,
        n_iter=10,
        seed=False,
        full_output=False) Maximum likelihood superposition of two coordinate arrays.
 | source code |  |