Package csb :: Package statistics :: Module scalemixture :: Class ScaleMixture
[frames] | no frames]

Class ScaleMixture

source code

         object --+        
                  |        
pdf.AbstractDensity --+    
                      |    
        pdf.BaseDensity --+
                          |
                         ScaleMixture

Robust probabilistic superposition and comparison of protein structures Martin Mechelke and Michael Habeck

Represenation of a distribution as a mixture of gaussians with a mean of zero and different inverse variances/scales. The number of scales equals the number of datapoints.

The underlying family is determined by a prior ScaleMixturePrior on the scales. Choosing a GammaPrior results in Stundent-t posterior, wheras a InvGammaPrior leads to a K-Distribution as posterior.

Nested Classes

Inherited from pdf.AbstractDensity: __metaclass__

Instance Methods
 
__init__(self, scales=array([ 1., 1.]), prior=None, d=3)
x.__init__(...) initializes x; see help(type(x)) for signature
source code
array
log_prob(self, x)
Evaluate the logarithm of the probability of observing values x.
source code
 
random(self, shape=None)
Generate random samples from the probability distribution.
source code

Inherited from pdf.AbstractDensity: __call__, __getitem__, __setitem__, __str__, estimate, evaluate, get_params, set_params

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __subclasshook__

Class Variables
  __abstractmethods__ = frozenset([])
Properties
  prior
  scales

Inherited from pdf.AbstractDensity: estimator, parameters

Inherited from object: __class__

Method Details

__init__(self, scales=array([ 1., 1.]), prior=None, d=3)
(Constructor)

source code 

x.__init__(...) initializes x; see help(type(x)) for signature

Overrides: object.__init__
(inherited documentation)

log_prob(self, x)

source code 

Evaluate the logarithm of the probability of observing values x.

Parameters:
  • x - values
Returns: array
Overrides: pdf.AbstractDensity.log_prob
(inherited documentation)

random(self, shape=None)

source code 

Generate random samples from the probability distribution.

Parameters:
  • size - number of values to sample
Overrides: pdf.AbstractDensity.random
(inherited documentation)

Property Details

prior

Get Method:
unreachable.prior(self)
Set Method:
unreachable.prior(self, value)

scales

Get Method:
unreachable.scales(self)
Set Method:
unreachable.scales(self, value)